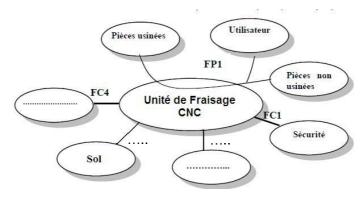

Nom et Prénom:	
Classe 3 ^{ème} science technique :	de registre :

A-PARTIE GENIE MECANIQUE

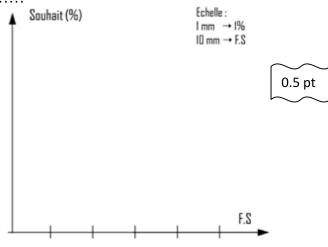
I- Analyse fonctionnelle externe d'un produit


1- Compléter la modélisation du système (Unité de fraisage CNC) :

2- Compléter le diagramme « Pieuvre » suivant :

3- Compléter la formulation des fonctions de service :




- FP₁: Permettre.....
- FC₁:.....
- FC₂: S'alimenter avec l'énergie électrique.

0.5 pt

- FC₃:....
- FC₄: S'adapter au milieu ambiant.

FEUILLE RÉPONSES	UNITÉ DE FRAISAGE CNC	Page1/8	1

II- Analyse structurelle

1- Lecture du dessin d'ensemble :

1.1-Identifier les formes sur les pièces suivantes :

1.25 pt

Forme sur les pièces	Nom de la forme
Usinage sur la semelle (1) recevant (3)	
Usinage sur la semelle (1) recevant (5)	
Usinage sur la plaque (7) recevant la tête de vis (3)	
Usinage réalisé sur l'extrémité gauche de la vis de manœuvre (6)	
Usinage sur (6) sur le quel prend appui la molette (9)	

1.2-En se référant au dessin d'ensemble du système, compléter le tableau suivant en indiquant la fonction ou les composants qui assurent la fonction :

Fonctions	Composants
Assembler la plaque (7) à la semelle (1)	
Immobiliser la molette (9) par rapport à la vis (6)	
	Vis 10
	Forme en queue d'aronde entre (5) et (1) (Voir vue suivant F)

1.3-Matériaux	: e	colia	uer	les	désignations	suivantes	:
1 D- Matchaax	. 6	\Piiq	uci	03	acsignations	Juivantes	•

2pt	

EN-GJL - 250	
18CrMo4	
C40	
CuZn20Ni15Pb1	

2- Etude des liaisons Mécaniques :

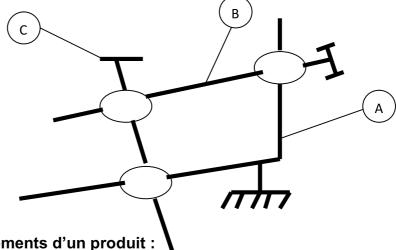
2.1- Chercher les classes d'équivalence des pièces cinématiquement liées :

1.5	pt

Classes d'équivalence	Pièces
A	{1,
В	{5,
С	{6,

FEUILLE REPUNSES UNITE DE FRAISAGE CINC FAGE2/8	FEUILLE RÉPONSES	Unité De Fraisage CNC	Page2/8
---	------------------	-----------------------	---------

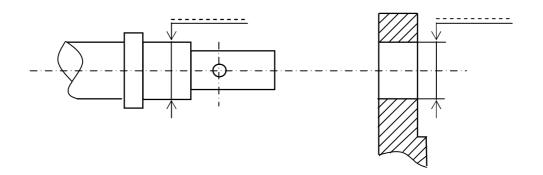
2.2-Tracer le graphe de liaison :



0.75 pt

 \bigcirc

2.3-Compléter le schéma cinématique de la cale réglable :


3- Définition des éléments d'un produit :

3.1-Tolérancedimensionnelle:

L'ajustement entre la plaque (7) et la vis de manœuvre (6) est ø 12H7/g6.

3.1.1- Inscrire la côte tolérancée pour chaque pièce :

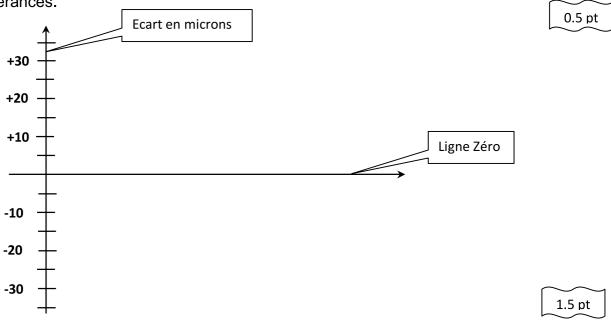
1 pt

3.1.2- Remplir les tableaux suivants :

2.5 pt

Cote tolérancée plaque (7)	CN	ES	EI	IT	C _{Maxi}	C _{mini}

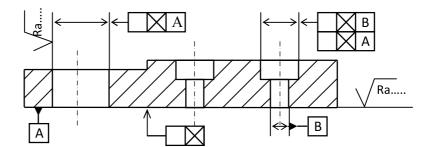
Cote tolérancée vis (6)	cn	es	ei	IT	C _{Maxi}	C _{mini}


FEUILLE RÉPONSES	UNITÉ DE FRAISAGE CNC	Page3/8

3.1.3- Pour l'ajustement proposé entre la plaque (7) et le vis de manœuvre (6) :

- Porter sur le graphe suivant les Intervalles de tolérances des deux pièces.
- Préciser le jeu mini et maxi et déduire la nature de l'ajustement

Utiliser des rectangles de largeurs 20 mm et de hauteurs les étendues des intervalles de tolérances.


		Valeur	Nature de l'ajustement
Jeu _{Maxi}	Expression		
Jeu Maxi	A.N		
lou	Expression		
Jeu _{mini}	A.N		

3.2-Tolérance géométrique et état de surface :

Inscrire sur le dessin de définition de la plaque (7) suivant

- Les spécifications correspondantes aux conditions géométriques
- Les spécifications correspondantes aux états des surfaces

Valeurs usuelles de Ra en fonction de l'état de la surface à titre indicatif.

Surface	Ra	0,025	0,05	0,1	0,2	0,4	0,8	1,6	3,2	6,3	12,5	25
Très lisse												
Lisse												
Moyenne												
Rugueuse												

FEUILLE RÉPONSES	UNITÉ DE FRAISAGE CNC	Page4/8

NOTES

Nom et Prénom:	· • • •
Classe 3 ^{ème} science technique :	

B-PARTIE GENIE ELECTRIQUE

I – Etude du système de contrôle de qualité de fraisage

1 – Etude du codeur (codeur 1)

Le codeur 1 reçoit sur son entrée les nombres 0, 1, 2 et 3, par l'intermédiaire des touches T0, T1, T2, T3 par l'opérateur et donne à sa sortie une information codée binaire $A = a_1 a_0$ (voir Fig.1 du dossier technique page 2/4)

a – compléter la table de vérité ci-dessous

	a ₁	a ₀
ТО		
T1		
T2		
Т3		

b- Ecrire les équations de a₁ eta₀ en fonction des variables d'entrées T0, T1, T2 et T3

a₁ = | a₀ =

c− Ecrire les équations de a₁eta₀ en utilisantdes fonctions NAND à deux entrées :

a₁ =

a₀ =

d – Représenter le logigramme du codeur en utilisant des opérateurs NAND à deux entrées

2 – Etude du Transcodeur 1 (BCD 7 segments)

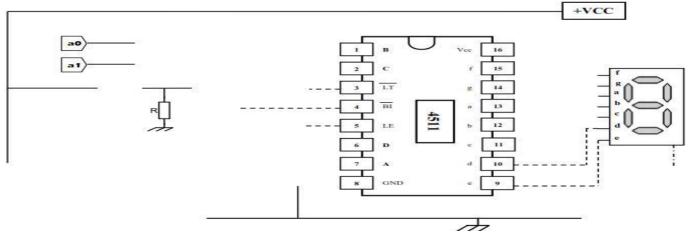
En se référant à la description page 2/4 du dossier technique et de la fig.2 :

a – compléter la table de vérité ci-après

	a ₁	a ₀	а	b	С	d	е	f	g
0									
1									
2									
3									

b- Ecrire les équations des segments (e) et (d) en fonction de a₁eta₀ (1^{ère} forme canonique)

\sim	_	
=	_	


d =

c-Simplifier l'équation du segment (e) par la méthode algébrique

d – Ecrire les équations du segment (d) en utilisantdes fonctions NAND à deux entrées :

3 - Etude du système d'affichage

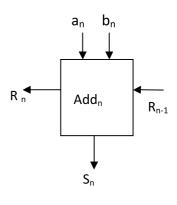
a- En se référant au D.T page 3/4, Compléter le montage du Cl 4511et prévoir une solution permettant d'éteindre l'afficheur par action sur un bouton poussoir (RAZ)

b- Donner le type de l'afficheur (à anode commune ou à cathode commune) (justifier)

II - Additionneur des pièces usinées :

1- Etude des opérations arithmétiques

Parmi les éléments de la partie commande, un additionneur binaire additionne le nombre N_F des pièces de degrés F et le nombre N_F des pièces de degrés P usinés en une heure. Sachant que $N_F = a_3 a_2 a_1 a_0$ et $N_F = b_3 b_2 b_1 b_0$:


a – Compléter l'opération ci-dessous traduisant le fonctionnement de l'additionneur

2- Etude d'un additionneur élémentaire

a – compléter la table de vérité ci-dessous :

Rn-1	an	b _n	Sn	Rn
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

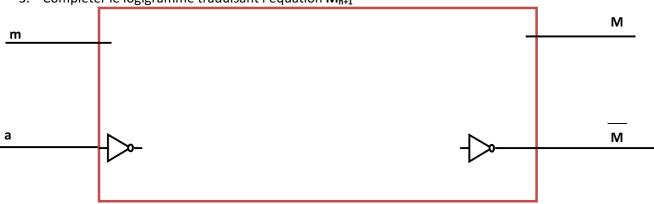
b -	- Dé	dui 	re l'	équ	atio	on c	le Sn	(la	for	me 	sim	ıpli	fiée 	e) 			 	••••	 			 •••••		 	 	 	
c–	Dor	nne	r un	e re	epré	éser	ntatio	on d	e l'	add	litio	nn	eur	en	en	tier											
																			1		1						
		Γ				7							7				Γ			ļ			Γ]	 	
													-														

C – Etude de la commande de la machine

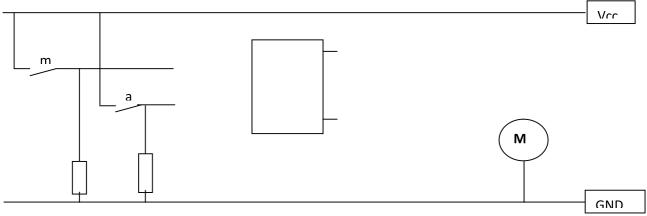
Le moteur de la fraiseuse (**M**) est commandé électroniquement par 2 boutons poussoirs (**m** pour la mise en marche et **a** pour l'arrêt). La fonction est réalisée par des opérateurs logiques possédant 2 états stables (0 ou 1 logique).

- Initialement la machine est à l'arrêt.
- Dès qu'on actionne **m**, la machine se met en marche.
- On relâche **m**, la machine mémorise son état précédent.
- On appui sur a, la machine s'arrête.
- On relâche le bouton a, la machine mémorise son état précédent
- Si on actionne les 2 boutons simultanément, la machine complémente son état (elle se met en marche si elle est arrêté ou elle s'arrête si elle est en marche)

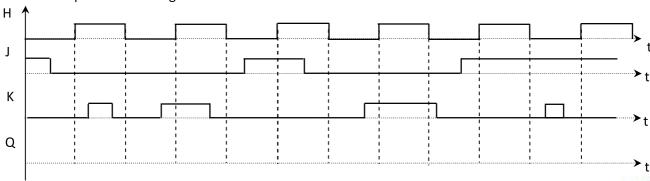
1. Compléter la table de vérité


а	m	M _n	M _{n+1}
0	0	0	
0	0	1	•••
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

2. Déterminer graphiquement l'équation simplifiée de \mathbf{M}_{n+1}


	00	01	11	10
0				
1				

M_{n+1=}


3. Compléter le logigramme traduisant l'équation \mathbf{M}_{n+1}

- 4. On propose de changer le circuit par une bascule JK à niveau bas, dont l'entrée d'horloge est reliée à la masse pour assurer la transition de la sortie dès l'action sur l'une des entrées.
- a- Compléter le circuit électrique correspondant :

b- Compléter le chronogramme suivant

FEUILLE RÉPONSES

UNITÉ DE FRAISAGE CNC

